Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 380
Filter
1.
Nat Commun ; 15(1): 3800, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714703

ABSTRACT

Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (R2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using population-level distributions of clonal fraction. Among individuals with JAK2 V617F clonal hematopoiesis of indeterminate potential or mCAs affecting the JAK2 gene on chromosome 9, PACER score was strongly correlated with erythrocyte count. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified a TCL1A locus variant associated with mCA clonal expansion rate, with suggestive variants in NRIP1 and TERT.


Subject(s)
Chromosome Aberrations , Clonal Hematopoiesis , Mosaicism , Humans , Clonal Hematopoiesis/genetics , Male , Female , Genome-Wide Association Study , Janus Kinase 2/genetics , Telomerase/genetics , Telomerase/metabolism , Loss of Heterozygosity , Cross-Sectional Studies , Mutation , Middle Aged , Hematopoietic Stem Cells/metabolism , Polymorphism, Single Nucleotide , Aged
2.
Nat Hum Behav ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632388

ABSTRACT

Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviours and although strides have been made using genome-wide association studies to identify risk variants, most variants identified have been for nicotine consumption, rather than TUD. Here we leveraged four US biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records) in 653,790 individuals (495,005 European, 114,420 African American and 44,365 Latin American) and data from UK Biobank (ncombined = 898,680). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviours in children and hundreds of medical outcomes, including HIV infection, heart disease and pain. This work furthers our biological understanding of TUD and establishes electronic health records as a source of phenotypic information for studying the genetics of TUD.

3.
medRxiv ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38559137

ABSTRACT

Hypertriglyceridemia (HTG) is a common cardiovascular risk factor characterized by elevated circulating triglyceride (TG) levels. Researchers have assessed the genetic factors that influence HTG in studies focused predominantly on individuals of European ancestry (EA). However, relatively little is known about the contribution of genetic variation to HTG in people of AA, potentially constraining research and treatment opportunities; the lipid profile for African ancestry (AA) populations differs from that of EA populations-which may be partially attributable to genetics. Our objective was to characterize genetic profiles among individuals of AA with mild-to-moderate HTG and severe HTG versus those with normal TGs by leveraging whole genome sequencing (WGS) data and longitudinal electronic health records (EHRs) available in the All of Us (AoU) program. We compared the enrichment of functional variants within five canonical TG metabolism genes, an AA-specific polygenic risk score for TGs, and frequencies of 145 known potentially causal TG variants between patients with HTG and normal TG among a cohort of AA patients (N=15,373). Those with mild-to-moderate HTG (N=342) and severe HTG (N≤20) were more likely to carry APOA5 p.S19W (OR=2.21, 95% CI [1.70-2.88], p=2.74×10 -9 and OR=4.16, 95% CI [1.39-12.45], p=0.01, respectively) than those with normal TG. They were also more likely to have an elevated (top 10%) PRS, elevated carriage of potentially causal variant alleles, and carry any genetic risk factor. Alternative definitions of HTG yielded comparable results. In conclusion, individuals of AA with HTG were enriched for genetic risk factors compared to individuals with normal TGs.

4.
Nat Commun ; 15(1): 3384, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649760

ABSTRACT

Polygenic variation unrelated to disease contributes to interindividual variation in baseline white blood cell (WBC) counts, but its clinical significance is uncharacterized. We investigated the clinical consequences of a genetic predisposition toward lower WBC counts among 89,559 biobank participants from tertiary care centers using a polygenic score for WBC count (PGSWBC) comprising single nucleotide polymorphisms not associated with disease. A predisposition to lower WBC counts was associated with a decreased risk of identifying pathology on a bone marrow biopsy performed for a low WBC count (odds-ratio = 0.55 per standard deviation increase in PGSWBC [95%CI, 0.30-0.94], p = 0.04), an increased risk of leukopenia (a low WBC count) when treated with a chemotherapeutic (n = 1724, hazard ratio [HR] = 0.78 [0.69-0.88], p = 4.0 × 10-5) or immunosuppressant (n = 354, HR = 0.61 [0.38-0.99], p = 0.04). A predisposition to benign lower WBC counts was associated with an increased risk of discontinuing azathioprine treatment (n = 1,466, HR = 0.62 [0.44-0.87], p = 0.006). Collectively, these findings suggest that there are genetically predisposed individuals who are susceptible to escalations or alterations in clinical care that may be harmful or of little benefit.


Subject(s)
Genetic Predisposition to Disease , Leukopenia , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Humans , Leukocyte Count , Male , Female , Leukopenia/genetics , Leukopenia/blood , Middle Aged , Aged , Adult , Immunosuppressive Agents/therapeutic use
5.
Nat Genet ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684898

ABSTRACT

Health equity is the state in which everyone has fair and just opportunities to attain their highest level of health. The field of human genomics has fallen short in increasing health equity, largely because the diversity of the human population has been inadequately reflected among participants of genomics research. This lack of diversity leads to disparities that can have scientific and clinical consequences. Achieving health equity related to genomics will require greater effort in addressing inequities within the field. As part of the commitment of the National Human Genome Research Institute (NHGRI) to advancing health equity, it convened experts in genomics and health equity research to make recommendations and performed a review of current literature to identify the landscape of gaps and opportunities at the interface between human genomics and health equity research. This Perspective describes these findings and examines health equity within the context of human genomics and genomic medicine.

6.
Am J Hum Genet ; 111(3): 429-432, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38458166

ABSTRACT

This article is based on the address given by the author at the 2023 meeting of The American Society of Human Genetics (ASHG). A video of the original address can be found at the ASHG website.


Subject(s)
Awards and Prizes , Genetics, Medical , United States , Humans , Leadership , Societies, Medical
7.
Cell Rep Med ; 5(2): 101430, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38382466

ABSTRACT

Primary open-angle glaucoma (POAG), a leading cause of irreversible blindness globally, shows disparity in prevalence and manifestations across ancestries. We perform meta-analysis across 15 biobanks (of the Global Biobank Meta-analysis Initiative) (n = 1,487,441: cases = 26,848) and merge with previous multi-ancestry studies, with the combined dataset representing the largest and most diverse POAG study to date (n = 1,478,037: cases = 46,325) and identify 17 novel significant loci, 5 of which were ancestry specific. Gene-enrichment and transcriptome-wide association analyses implicate vascular and cancer genes, a fifth of which are primary ciliary related. We perform an extensive statistical analysis of SIX6 and CDKN2B-AS1 loci in human GTEx data and across large electronic health records showing interaction between SIX6 gene and causal variants in the chr9p21.3 locus, with expression effect on CDKN2A/B. Our results suggest that some POAG risk variants may be ancestry specific, sex specific, or both, and support the contribution of genes involved in programmed cell death in POAG pathogenesis.


Subject(s)
Genetic Predisposition to Disease , Glaucoma, Open-Angle , Male , Female , Humans , Genetic Predisposition to Disease/genetics , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/epidemiology , Polymorphism, Single Nucleotide , Cell Proliferation , Biology
8.
Nat Commun ; 15(1): 1016, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310129

ABSTRACT

Polygenic risk scores (PRS) have shown successes in clinics, but most PRS methods focus only on participants with distinct primary continental ancestry without accommodating recently-admixed individuals with mosaic continental ancestry backgrounds for different segments of their genomes. Here, we develop GAUDI, a novel penalized-regression-based method specifically designed for admixed individuals. GAUDI explicitly models ancestry-differential effects while borrowing information across segments with shared ancestry in admixed genomes. We demonstrate marked advantages of GAUDI over other methods through comprehensive simulation and real data analyses for traits with associated variants exhibiting ancestral-differential effects. Leveraging data from the Women's Health Initiative study, we show that GAUDI improves PRS prediction of white blood cell count and C-reactive protein in African Americans by > 64% compared to alternative methods, and even outperforms PRS-CSx with large European GWAS for some scenarios. We believe GAUDI will be a valuable tool to mitigate disparities in PRS performance in admixed individuals.


Subject(s)
Black or African American , Genetic Risk Score , Software , Humans , Black or African American/genetics , Computer Simulation , Genetic Predisposition to Disease , Genome, Human , Genome-Wide Association Study/methods , Phenotype , Risk Factors
9.
bioRxiv ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961248

ABSTRACT

Rhythm and language-related traits are phenotypically correlated, but their genetic overlap is largely unknown. Here, we leveraged two large-scale genome-wide association studies performed to shed light on the shared genetics of rhythm (N=606,825) and dyslexia (N=1,138,870). Our results reveal an intricate shared genetic and neurobiological architecture, and lay groundwork for resolving longstanding debates about the potential co-evolution of human language and musical traits.

10.
Elife ; 122023 10 26.
Article in English | MEDLINE | ID: mdl-37882666

ABSTRACT

Background: Two risk variants in the apolipoprotein L1 gene (APOL1) have been associated with increased susceptibility to sepsis in Black patients. However, it remains unclear whether APOL1 high-risk genotypes are associated with occurrence of either sepsis or sepsis-related phenotypes in patients hospitalized with infections, independent of their association with pre-existing severe renal disease. Methods: A retrospective cohort study of 2242 Black patients hospitalized with infections. We assessed whether carriage of APOL1 high-risk genotypes was associated with the risk of sepsis and sepsis-related phenotypes in patients hospitalized with infections. The primary outcome was sepsis; secondary outcomes were short-term mortality, and organ failure related to sepsis. Results: Of 2242 Black patients hospitalized with infections, 565 developed sepsis. Patients with high-risk APOL1 genotypes had a significantly increased risk of sepsis (odds ratio [OR]=1.29 [95% CI, 1.00-1.67; p=0.047]); however, this association was not significant after adjustment for pre-existing severe renal disease (OR = 1.14 [95% CI, 0.88-1.48; p=0.33]), nor after exclusion of those patients with pre-existing severe renal disease (OR = 0.99 [95% CI, 0.70-1.39; p=0.95]). APOL1 high-risk genotypes were significantly associated with the renal dysfunction component of the Sepsis-3 criteria (OR = 1.64 [95% CI, 1.21-2.22; p=0.001]), but not with other sepsis-related organ dysfunction or short-term mortality. The association between high-risk APOL1 genotypes and sepsis-related renal dysfunction was markedly attenuated by adjusting for pre-existing severe renal disease (OR = 1.36 [95% CI, 1.00-1.86; p=0.05]) and was nullified after exclusion of patients with pre-existing severe renal disease (OR = 1.16 [95% CI, 0.74-1.81; p=0.52]). Conclusions: APOL1 high-risk genotypes were associated with an increased risk of sepsis; however, this increased risk was attributable predominantly to pre-existing severe renal disease. Funding: This study was supported by R01GM120523 (QF), R01HL163854 (QF), R35GM131770 (CMS), HL133786 (WQW), and Vanderbilt Faculty Research Scholar Fund (QF). The dataset(s) used for the analyses described were obtained from Vanderbilt University Medical Center's BioVU which is supported by institutional funding, the 1S10RR025141-01 instrumentation award, and by the CTSA grant UL1TR0004from NCATS/NIH. Additional funding provided by the NIH through grants P50GM115305 and U19HL065962. The authors wish to acknowledge the expert technical support of the VANTAGE and VANGARD core facilities, supported in part by the Vanderbilt-Ingram Cancer Center (P30 CA068485) and Vanderbilt Vision Center (P30 EY08126). The funders had no role in design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.


When the body is fighting off an infection, the processes it uses to protect itself can sometimes overreact. This results in a condition known as sepsis which can cause life-threatening damage to multiple organs. In the United States, Black patients are 60-80% more likely to develop sepsis compared to individuals who identify as White; differences remain even after accounting for socio-economic status and presence of other illnesses. Recent work has suggested that two variants of the APOL1 gene which are almost exclusively found in people with African ancestry may be a contributing factor to this disparity. These 'high-risk' genetic variants have also been shown to increase the likelihood of kidney diseases. It is therefore possible that the elevated chance of sepsis is not directly linked to these variations of APOL1, but rather is the result of patients already having reduced kidney function. To understand the relationship between APOL1 and sepsis, Jiang et al. analyzed data from patients admitted to Vanderbilt University Medical Centre in the United States between 2000 and 2020. This included 2,242 patients who identified as Black and had been hospitalized with an infection. The analyses showed that 16% of these individuals were carriers of the APOL1 high-risk variants. The high-risk patients were more likely to experience sepsis and demonstrate kidney damage. But other organs commonly damaged by sepsis were not affected more in these individuals compared to the other 84% of patients who did not have these variants. Furthermore, when individuals with pre-existing kidney diseases were removed from this high-risk group, the increased likelihood of sepsis was no longer prominent. These findings suggest that the APOL1 variants do not directly increase the risk of sepsis, and this association is primarily due to patients with these genetic variations being more susceptible to kidney diseases. There are new drugs under development targeting the APOL1 variants. While these may provide protection against kidney diseases, they are unlikely to be successful at preventing or treating sepsis once a patient has been hospitalized with an infection.


Subject(s)
Apolipoprotein L1 , Kidney Diseases , Sepsis , Humans , Apolipoprotein L1/genetics , Genotype , Retrospective Studies , Sepsis/complications , Sepsis/genetics , Black or African American
11.
medRxiv ; 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37662324

ABSTRACT

Polygenic variation unrelated to disease contributes to interindividual variation in baseline white blood cell (WBC) counts, but its clinical significance is undefined. We investigated the clinical consequences of a genetic predisposition toward lower WBC counts among 89,559 biobank participants from tertiary care centers using a polygenic score for WBC count (PGSWBC) comprising single nucleotide polymorphisms not associated with disease. A predisposition to lower WBC counts was associated with a decreased risk of identifying pathology on a bone marrow biopsy performed for a low WBC count (odds-ratio=0.55 per standard deviation increase in PGSWBC [95%CI, 0.30 - 0.94], p=0.04), an increased risk of leukopenia (a low WBC count) when treated with a chemotherapeutic (n=1,724, hazard ratio [HR]=0.78 [0.69 - 0.88], p=4.0×10-5) or immunosuppressant (n=354, HR=0.61 [0.38 - 0.99], p=0.04). A predisposition to benign lower WBC counts was associated with an increased risk of discontinuing azathioprine treatment (n=1,466, HR=0.62 [0.44 - 0.87], p=0.006). Collectively, these findings suggest that a WBC count polygenic score identifies individuals who are susceptible to escalations or alterations in clinical care that may be harmful or of little benefit.

12.
JAMA Dermatol ; 159(9): 930-938, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37494057

ABSTRACT

Importance: Hidradenitis suppurativa (HS) is a common and severely morbid chronic inflammatory skin disease that is reported to be highly heritable. However, the genetic understanding of HS is insufficient, and limited genome-wide association studies (GWASs) have been performed for HS, which have not identified significant risk loci. Objective: To identify genetic variants associated with HS and to shed light on the underlying genes and genetic mechanisms. Design, Setting, and Participants: This genetic association study recruited 753 patients with HS in the HS Program for Research and Care Excellence (HS ProCARE) at the University of North Carolina Department of Dermatology from August 2018 to July 2021. A GWAS was performed for 720 patients (after quality control) with controls from the Add Health study and then meta-analyzed with 2 large biobanks, UK Biobank (247 cases) and FinnGen (673 cases). Variants at 3 loci were tested for replication in the BioVU biobank (290 cases). Data analysis was performed from September 2021 to December 2022. Main Outcomes and Measures: Main outcome measures are loci identified, with association of P < 1 × 10-8 considered significant. Results: A total of 753 patients were recruited, with 720 included in the analysis. Mean (SD) age at symptom onset was 20.3 (10.57) years and at enrollment was 35.3 (13.52) years; 360 (50.0%) patients were Black, and 575 (79.7%) were female. In a meta-analysis of the 4 studies, 2 HS-associated loci were identified and replicated, with lead variants rs10512572 (P = 2.3 × 10-11) and rs17090189 (P = 2.1 × 10-8) near the SOX9 and KLF5 genes, respectively. Variants at these loci are located in enhancer regulatory elements detected in skin tissue. Conclusions and Relevance: In this genetic association study, common variants associated with HS located near the SOX9 and KLF5 genes were associated with risk of HS. These or other nearby genes may be associated with genetic risk of disease and the development of clinical features, such as cysts, comedones, and inflammatory tunnels, that are unique to HS. New insights into disease pathogenesis related to these genes may help predict disease progression and novel treatment approaches in the future.


Subject(s)
Acne Vulgaris , Hidradenitis Suppurativa , Humans , Female , Male , Hidradenitis Suppurativa/genetics , Hidradenitis Suppurativa/pathology , Genome-Wide Association Study , Skin/pathology , Risk Factors
13.
medRxiv ; 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37034728

ABSTRACT

Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviors, and although strides have been made using genome-wide association studies (GWAS) to identify risk variants, the majority of variants identified have been for nicotine consumption, rather than TUD. We leveraged five biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records, EHR) in 898,680 individuals (739,895 European, 114,420 African American, 44,365 Latin American). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviors in children, and hundreds of medical outcomes, including HIV infection, heart disease, and pain. This work furthers our biological understanding of TUD and establishes EHR as a source of phenotypic information for studying the genetics of TUD.

14.
BMC Med ; 21(1): 163, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37118782

ABSTRACT

BACKGROUND: Considerable evidence has been reported that tobacco use could cause alterations in gut microbiota composition. The microbiota-gut-brain axis also in turn hinted at a possible contribution of the gut microbiota to smoking. However, population-level studies with a higher evidence level for causality are lacking. METHODS: This study utilized the summary-level data of respective genome-wide association study (GWAS) for 211 gut microbial taxa and five smoking phenotypes to reveal the causal association between the gut microbiota and tobacco smoking. Two-sample bidirectional Mendelian randomization (MR) design was deployed and comprehensively sensitive analyses were followed to validate the robustness of results. We further performed multivariable MR to evaluate the effect of neurotransmitter-associated metabolites on observed associations. RESULTS: Our univariable MR results confirmed the effects of smoking on three taxa (Intestinimonas, Catenibacterium, and Ruminococcaceae, observed from previous studies) with boosted evidence level and identified another 13 taxa which may be causally affected by tobacco smoking. As for the other direction, we revealed that smoking behaviors could be potential consequence of specific taxa abundance. Combining with existing observational evidence, we provided novel insights regarding a positive feedback loop of smoking through Actinobacteria and indicated a potential mechanism for the link between parental smoking and early smoking initiation of their children driven by Bifidobacterium. The multivariable MR results suggested that neurotransmitter-associated metabolites (tryptophan and tyrosine, also supported by previous studies) probably played a role in the action pathway from the gut microbiota to smoking, especially for Actinobacteria and Peptococcus. CONCLUSIONS: In summary, the current study suggested the role of the specific gut microbes on the risk for cigarette smoking (likely involving alterations in metabolites) and in turn smoking on specific gut microbes. Our findings highlighted the hazards of tobacco use for gut flora dysbiosis and shed light on the potential role of specific gut microbiota for smoking behaviors.


Subject(s)
Actinobacteria , Gastrointestinal Microbiome , Gastrointestinal Microbiome/genetics , Smoking/adverse effects , Genome-Wide Association Study , Mendelian Randomization Analysis , Clostridiales , Tobacco Smoking , Polymorphism, Single Nucleotide
15.
Lupus ; 32(6): 763-770, 2023 May.
Article in English | MEDLINE | ID: mdl-37105192

ABSTRACT

BACKGROUND: Systemic lupus erythematosus (SLE) disproportionately affects individuals of African ancestry (AA) compared to European ancestry (EA). In the general population, high risk (HR) variants in the apolipoprotein L1 (APOL1) gene increase the risk of renal and hypertensive disorders in individuals of AA. Since SLE is characterized by an interferon signature and APOL1 expression is driven by interferon, we examined the hypothesis that APOL1 HR genotypes predominantly drive higher rates of renal and hypertensive-related comorbidities observed in SLE patients of AA versus those of EA. METHODS: We performed a retrospective cohort study in patients with SLE of EA and AA using a genetic biobank linked to de-identified electronic health records. APOL1 HR genotypes were defined as G1/G1, G2/G2, or G1/G2 and low risk (LR) genotypes as 1 or 0 copies of the G1 and G2 alleles. To identify renal and hypertensive-related disorders that differed in prevalence by ancestry, we used a phenome-wide association approach. We then used logistic regression to compare the prevalence of renal and hypertensive-related disorders in EA and AA patients, both including and excluding patients with the APOL1 HR genotype. In a sensitivity analysis, we examined the association of end stage renal disease secondary to lupus nephritis (LN-related ESRD) with ancestry and the APOL1 genotype. RESULTS: We studied 784 patients with SLE; 195 (24.9%) were of AA, of whom 27 (13.8%) had APOL1 HR genotypes. Eighteen renal and hypertensive-related phenotypes were more common in AA than EA patients (p-value ≤ 1.4E-4). All phenotypes remained significantly different after exclusion of patients with APOL1 HR genotypes, and most point odds ratios (ORs) decreased only slightly. Even among ORs with the greatest decrease, risk for AA patients without the APOL1 HR genotype remained significantly elevated compared to EA patients. In the sensitivity analysis, LN-related ESRD was more prevalent in SLE patients of AA versus EA and AA patients with the APOL1 HR genotype versus LR (p-value < .05 for both). CONCLUSION: The higher prevalence of renal and hypertensive disorders in SLE patients of AA compared to those of EA is not fully explained by the presence of APOL1 high risk variants.


Subject(s)
Apolipoprotein L1 , Hypertension , Kidney Failure, Chronic , Lupus Erythematosus, Systemic , Humans , Apolipoprotein L1/genetics , Black or African American/genetics , Genetic Predisposition to Disease , Genotype , Hypertension/epidemiology , Hypertension/genetics , Kidney Failure, Chronic/epidemiology , Kidney Failure, Chronic/genetics , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/genetics , Retrospective Studies , Risk Factors
16.
Neurobiol Aging ; 126: 25-33, 2023 06.
Article in English | MEDLINE | ID: mdl-36905877

ABSTRACT

The vascular endothelial growth factor (VEGF) signaling family has been implicated in neuroprotection and clinical progression in Alzheimer's disease (AD). Previous work in postmortem human dorsolateral prefrontal cortex demonstrated that higher transcript levels of VEGFB, PGF, FLT1, and FLT4 are associated with AD dementia, worse cognitive outcomes, and higher AD neuropathology. To expand prior work, we leveraged bulk RNA sequencing data, single nucleus RNA (snRNA) sequencing, and both tandem mass tag and selected reaction monitoring mass spectrometry proteomic measures from the post-mortem brain. Outcomes included AD diagnosis, cognition, and AD neuropathology. We replicated previously reported VEGFB and FLT1 results, whereby higher expression was associated with worse outcomes, and snRNA results suggest microglia, oligodendrocytes, and endothelia may play a central role in these associations. Additionally, FLT4 and NRP2 expression were associated with better cognitive outcomes. This study provides a comprehensive molecular picture of the VEGF signaling family in cognitive aging and AD and critical insight towards the biomarker and therapeutic potential of VEGF family members in AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Vascular Endothelial Growth Factor A/metabolism , Proteomics , Multiomics , Brain/metabolism , Vascular Endothelial Growth Factors/metabolism , RNA, Small Nuclear/metabolism
17.
J Pain ; 24(6): 1056-1068, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36736868

ABSTRACT

Chronic overlapping pain conditions (COPCs) are believed to share common etiological mechanisms involving central sensitization. Genetic and environmental factors putatively combine to influence susceptibility to central sensitization and COPCs. This study employed a genome-wide polygenic risk score approach to evaluate genetic influences on 8 common COPCs. COPCs were identified by International Classification of Disease codes in Vanderbilt's deidentified clinical biorepository (BioVU), with each COPC condition empirically weighted for the level of central sensitization based on prior work. A centralized pain score (CPS) was calculated for 55,340 individuals by summing the weighted number of COPCs. Overall, 12,502 individuals (22.6%) were diagnosed with at least 1 COPC, with females exhibiting nearly twice the mean CPS as males. To assess the genetic influence on centralized pain in COPCs, 6 pain polygenic risk scores (PRSs) were developed using UK Biobank data to predict 6 pain criteria (no pain, neck/shoulder, abdomen, hip, knee, low back pain). These PRSs were then deployed in the BioVU cohort to test for association with CPS. In regression models adjusted for age, sex, and BMI, all pain PRSs except hip pain were significantly associated with CPS. Our findings support a shared polygenic influence across COPCs potentially involving central sensitization mechanisms. PERSPECTIVE: This study used a polygenic risk score approach to investigate genetic influences on chronic overlapping pain conditions. Significant findings in this study provide evidence supporting previous hypotheses that a shared polygenic influence involving central sensitization may underly chronic overlapping pain conditions and can guide future biomarker and risk assessment research.


Subject(s)
Chronic Pain , Male , Female , Humans , Chronic Pain/etiology , Electronic Health Records , Chronic Disease , Risk Factors , Central Nervous System Sensitization
18.
Cell Genom ; 3(1): 100241, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36777179

ABSTRACT

Polygenic risk scores (PRSs) have been widely explored in precision medicine. However, few studies have thoroughly investigated their best practices in global populations across different diseases. We here utilized data from Global Biobank Meta-analysis Initiative (GBMI) to explore methodological considerations and PRS performance in 9 different biobanks for 14 disease endpoints. Specifically, we constructed PRSs using pruning and thresholding (P + T) and PRS-continuous shrinkage (CS). For both methods, using a European-based linkage disequilibrium (LD) reference panel resulted in comparable or higher prediction accuracy compared with several other non-European-based panels. PRS-CS overall outperformed the classic P + T method, especially for endpoints with higher SNP-based heritability. Notably, prediction accuracy is heterogeneous across endpoints, biobanks, and ancestries, especially for asthma, which has known variation in disease prevalence across populations. Overall, we provide lessons for PRS construction, evaluation, and interpretation using GBMI resources and highlight the importance of best practices for PRS in the biobank-scale genomics era.

19.
BMC Genomics ; 24(1): 75, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36797672

ABSTRACT

BACKGROUND: Exfoliation syndrome (XFS) is an age-related systemic disorder characterized by excessive production and progressive accumulation of abnormal extracellular material, with pathognomonic ocular manifestations. It is the most common cause of secondary glaucoma, resulting in widespread global blindness. The largest global meta-analysis of XFS in 123,457 multi-ethnic individuals from 24 countries identified seven loci with the strongest association signal in chr15q22-25 region near LOXL1. Expression analysis have so far correlated coding and a few non-coding variants in the region with LOXL1 expression levels, but functional effects of these variants is unclear. We hypothesize that analysis of the contribution of the genetically determined component of gene expression to XFS risk can provide a powerful method to elucidate potential roles of additional genes and clarify biology that underlie XFS. RESULTS: Transcriptomic Wide Association Studies (TWAS) using PrediXcan models trained in 48 GTEx tissues leveraging on results from the multi-ethnic and European ancestry GWAS were performed. To eliminate the possibility of false-positive results due to Linkage Disequilibrium (LD) contamination, we i) performed PrediXcan analysis in reduced models removing variants in LD with LOXL1 missense variants associated with XFS, and variants in LOXL1 models in both multiethnic and European ancestry individuals, ii) conducted conditional analysis of the significant signals in European ancestry individuals, and iii) filtered signals based on correlated gene expression, LD and shared eQTLs, iv) conducted expression validation analysis in human iris tissues. We observed twenty-eight genes in chr15q22-25 region that showed statistically significant associations, which were whittled down to ten genes after statistical validations. In experimental analysis, mRNA transcript levels for ARID3B, CD276, LOXL1, NEO1, SCAMP2, and UBL7 were significantly decreased in iris tissues from XFS patients compared to control samples. TWAS genes for XFS were significantly enriched for genes associated with inflammatory conditions. We also observed a higher incidence of XFS comorbidity with inflammatory and connective tissue diseases. CONCLUSION: Our results implicate a role for connective tissues and inflammation pathways in the etiology of XFS. Targeting the inflammatory pathway may be a potential therapeutic option to reduce progression in XFS.


Subject(s)
Exfoliation Syndrome , Humans , Exfoliation Syndrome/genetics , Exfoliation Syndrome/complications , Exfoliation Syndrome/metabolism , Amino Acid Oxidoreductases/genetics , RNA, Messenger , Mutation, Missense , Gene Expression , Polymorphism, Single Nucleotide , DNA-Binding Proteins/genetics , B7 Antigens/genetics
20.
medRxiv ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-36747677

ABSTRACT

Background: Two risk variants in the apolipoprotein L1 gene ( APOL1 ) have been associated with increased susceptibility to sepsis in Black patients. However, it remains unclear whether APOL1 high-risk genotypes are associated with occurrence of either sepsis or sepsis-related phenotypes in patients hospitalized with infections, independent of their association with pre-existing severe renal disease. Methods: A retrospective cohort study of 2,242 Black patients hospitalized with infections. We assessed whether carriage of APOL1 high-risk genotypes was associated with the risk of sepsis and sepsis-related phenotypes in patients hospitalized with infections. The primary outcome was sepsis; secondary outcomes were short-term mortality and organ failure related to sepsis. Results: Of 2,242 Black patients hospitalized with infections, 565 developed sepsis. Patients with high-risk APOL1 genotypes had a significantly increased risk of sepsis (odds ratio [OR]=1.29 [95% CI, 1.00-1.67; p=0.047]); however, this association was not significant after adjustment for pre-existing severe renal disease (OR=1.14 [95% CI, 0.88-1.48; p=0.33]), nor after exclusion of those patients with pre-existing severe renal disease (OR=0.99 [95% CI, 0.70-1.39; p=0.95]. APOL1 high-risk genotypes were significantly associated with the renal dysfunction component of the Sepsis-3 criteria (OR=1.64 [95% CI, 1.21-2.22; p=0.001], but not with other sepsis-related organ dysfunction or short-term mortality. The association between high-risk APOL1 genotypes and sepsis-related renal dysfunction was markedly attenuated by adjusting for pre-existing severe renal disease (OR=1.36 [95% CI, 1.00-1.86; p=0.05]) and was nullified after exclusion of patients with pre-existing severe renal disease (OR=1.16 [95% CI, 0.74-1.81; p=0.52]). Conclusion: APOL1 high-risk genotypes were associated with an increased risk of sepsis; however, this increased risk was attributable predominantly to pre-existing severe renal disease. Funding: This study was supported by R01GM120523 (Q.F.), R01HL163854 (Q.F.), R35GM131770 (C.M.S.), HL133786 (W.Q.W.), and Vanderbilt Faculty Research Scholar Fund (Q.F.). The dataset(s) used for the analyses described were obtained from Vanderbilt University Medical Center's BioVU which is supported by institutional funding, the 1S10RR025141-01 instrumentation award, and by the CTSA grant UL1TR0004from NCATS/NIH. Additional funding provided by the NIH through grants P50GM115305 and U19HL065962. The authors wish to acknowledge the expert technical support of the VANTAGE and VANGARD core facilities, supported in part by the Vanderbilt-Ingram Cancer Center (P30 CA068485) and Vanderbilt Vision Center (P30 EY08126).The funders had no role in design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

SELECTION OF CITATIONS
SEARCH DETAIL
...